Course Outline

I. Introduction

- Data Mining and KDD process
- Introduction to Data Mining
- Data Mining platforms

II. Predictive DM Techniques

- Decision Tree learning
- Bayesian classifier
- Classification rule learning
- Classifier Evaluation

III. Regression

IV. Descriptive DM

- Predictive vs. descriptive induction

1

- Subgroup discovery
- Association rule learning Hierarchical clustering

V. Relational Data Mining

- RDM and Inductive Logic Programming
- Propositionalization
- Semantic data mining

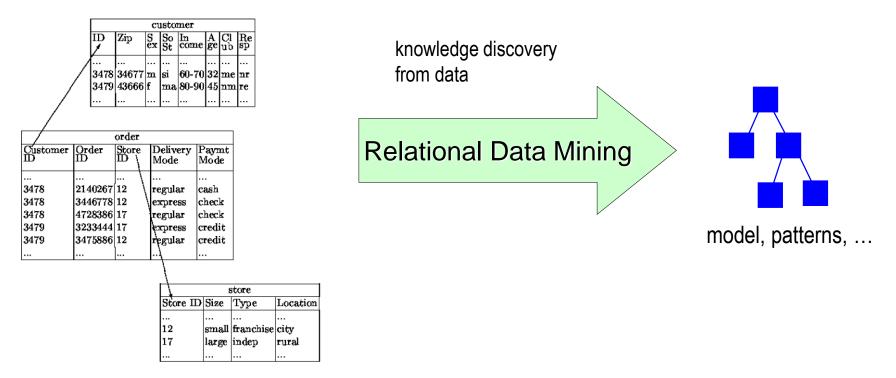
VI. Advanced Topics

Part V: Relational Data Mining

What is RDM

- Propositionalization techniques
- Semantic Data Mining

Relational Data Mining (Inductive Logic Programming) task

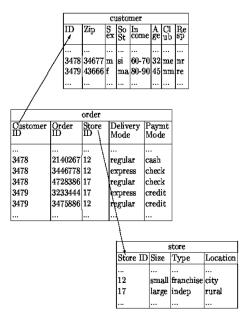


Relational representation of customers, orders and stores.

Given: a relational database, a set of tables. sets of logical facts, a graph, ... **Find:** a classification model, a set of interesting patterns

Relational data mining

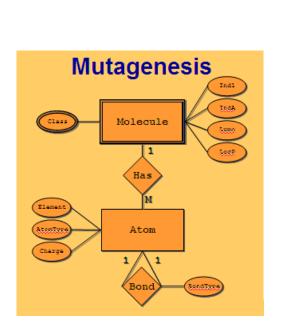
- ILP, relational learning, relational data mining
 - Learning from complex multi-relational data

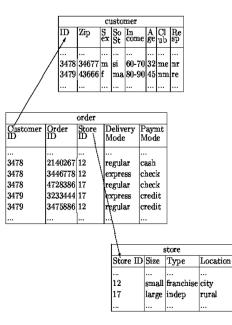


Relational representation of customers, orders and stores.

Relational data mining

- ILP, relational learning, relational data mining
 - Learning from complex multi-relational data
 - Learning from complex structured data: e.g., molecules and their biochemical properties



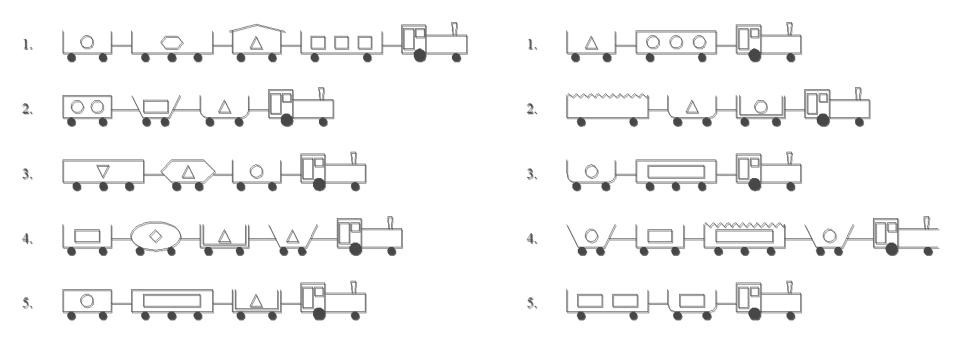


Relational representation of customers, orders and stores.

Sample problem: East-West trains

1. TRAINS GOING EAST

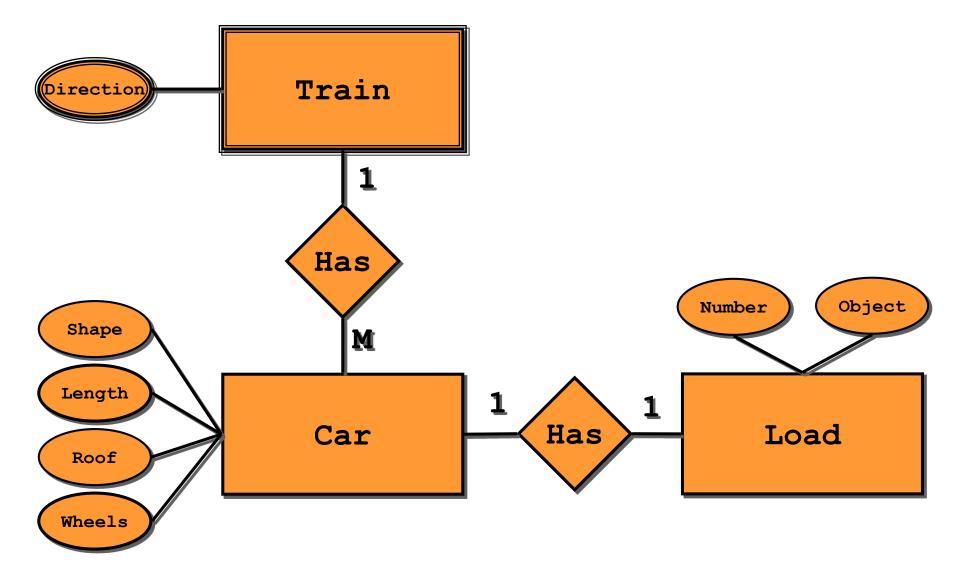
2. TRAINS GOING WEST



RDM knowledge representation (database)

LOAD	TABL	E					T	RAIN	TABLE
LOAD	CAR	OBJECT	NUMBER					<u>rain</u>	EASTBOUND
1	c1	circle	1					t1	TRUE
12	c2	hexagon	1					t2	TRUE
13	c3	triangle	1						
14	c4	rect angle	3					t6	FAL SE
		CA	R_TABLE						
		<u>C</u> /	R TRAIN	SHAPE	LENGTH	ROOF	WHEELS		
		C	1 t1	rect angle	short	none	2		
		C	2 t1	rect angle	long	none	3		
		C	3 t1	rect angle	short	peaked	2	i .	
		C	4 t 1	rect angle	long	none	2		

ER diagram for East-West trains



Relational data mining

- Relational data mining is characterized by using background knowledge (domain knowledge) in the data mining process
- Selected approaches:
 - Inductive logic programming ILP (Muggleton, 1991; Lavrač & Džeroski 1994), ...
 - Relational learning (Quinlan, 1993)
 - Learning in DL (Lisi 2004), ...
 - Relational Data Mining (Džeroski & Lavrač, 2001),
 - Statistical relational learning (Domingos, De Raedt...)
 - Propositionalization approach to RDM (Lavrač et al.)

Our early work: Semantic subgroup discovery

- Propositionalization approach: Using relational subgroup discovery in the SDM context
 - General purpose system RSD for Relational Subgroup Discovery, using a propositionalization approach to relational data mining
 - Applied to semantic data mining in a biomedical application by using the Gene Ontology as background knowledge in analyzing microarray data

(Železny and Lavrač, MLJ 2006)

Part V: Relational Data Mining

- What is RDM
- Propositionalization techniques
- Semantic Data Mining

				c	usto	ner					
		ID 1	Zip	S ex	$_{\rm St}^{\rm So}$	In con	ne	A ge	Cl ub	Re	
	/										
	/	3478	34677	m	si	60-	70	32	me	nr	
/	/	3479	43666	f	\mathbf{ma}	80-	90	45	nn	1 re	
\frown			order								
Customer ID	01 ID	der	$\frac{\text{Store}}{D}$)eliv 10de			'ayı 10d			
			\								
3478	214	10267	12	r	egula	ır	c	ash			
3478		6778		∖le	xpre	SS		hec			
3478		28386		h	egula). T		hec			
3479		3444			xpre			red			
3479	347	5886	12	n	egula	1.	c	red	it		
					1						
					1				s	tore	
					Sto	re I	D	Siz	e	Туре	Loc
					12			\mathbf{sm}	all	franchise	city

Relational representation of customers, orders and stores.

17

large indep

Location

rural

Step 1 Propositionalization

ι,													
		f1	f2	f3	f4	f5	f 6		1				\mathbf{fn}
	g1	1	0	0	1	1	1	0	0	1	0	1	1
	g2	0	1	1	0	1	1	0	0	0	1	1	0
	g3	0	1	1	1	0	0	1	1	0	0	0	1
	g4	1	1	1	0	1	nd i o	0	0	1	1	1	0
	g5	1	1	1	0	0 /	01	0	1	1	0	1	0
	g1	0	٥	1	1	0	0	0	1	0	0	0	1
	g2	1	1	0	0	1	1	0	1	0	1	1	1
	g3	0	0	0	0	1	0	0	1	1	1	0	0
U g	g4	1	0	1	1	1	0	1	0	0	1	0	1

		<u> </u>			isto	mor			
		ID	77:	-			LA.		ID-
		T A	Zip	$\mathbf{s}_{\mathbf{ex}}$	$_{St}^{So}$	In come	ge	lub	$_{\rm sp}^{\rm Re}$
		Ł			~ ~		-		<u> </u>
	/	3478	34677		si	60-70	132	me	
	/		43666			80-90			
		0110	10000	1		00 0	10	[
			order						
Customer	R	der	Store ID \	ID	eliv	erv]	ayı	\mathbf{nt}	
D	D		Шļ	Ν	lode	Ĩ	Aod	le	
			\	. .					
3478	214	10267	12	Ire	gula	ar	ash		
3478	344	16778	12	\le:	rpre	ss (hec	k	
3478	472	28386	17	Ire	gula	ar (hec	k	
3479	323	33444	17	- le:	spre	ss (red	it	
3479	347	75886	12	r,	gula	ar (red	it	
				'	1	.			
					1				
					\bot				
					1				tore
					Sto	re ID	Siz	e	Туре
					12		\mathbf{sm}	all	franchi
					17		lar	geli	indep

Relational representation of customers, orders and stores.

Location

city rural Step 1 Propositionalization 1 constructing 1 constru

- 1. constructing relational features
- 2. constructing a propositional table

	f1	f2	f3	f4	f5	f 6		1		1		fn
g1	1	0	0	1	1	1	0	0	1	0	1	1
g 2	0	1	1	0	1	1	0	0	0	1	1	0
g3	0	1	1	1	0	0	1	1	0	0	0	1
g4	1	1	1	0	1	10 1 0	0	0	1	1	1	0
g5	1	1	1	0	0	01	0	1	1	0	1	0
g1	0	0	1	1	0	0	0	1	0	0	0	1
g2	1	1.	0	0	1	1	0	1	0	1	1	1
g3	0	0	0	0	1	0	0	1	1	1	0	0
g4	1	0	1	1	1	0	1	0	0	1	0	1

				c	usto				
		ID ∮	Zip	S ex	So St	\lim_{com}	e ge	Cl ub	$\operatorname{Re}_{\operatorname{sp}}$
	/								
	/	3478	34677	m	si	60-7	0 32	m	e nr
,	/	3479	43666	f	ma	80-9	0 45	nn	are
			•						
									_
/			order]
Customer	B	der	Store ID \	I	Deliv	ery	Pay	mt	1
Ш	μυ		\mathbf{m} f	P	Mode	:	Mod	le	
			\						1
3478	214	0267	12	I	egula	ar	cash	ı	
3478	344	6778	12	∖le	xpre	ss	chec	k	
3478	472	8386	17	ŀ	egula	ar	chec	k	
3479	323	3444	17	k	xpre	ss	cred	it	
3479	347	5886	12	r	egula	ar	cred	it	
]		7				
					1				,
					7				
					11				tore
					Sto	re II) Siz	e	Туре
					12		\mathbf{sm}	all	franch
					17		lar	ge	indep

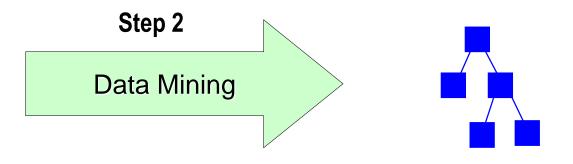
Relational representation of customers, orders and stores.

Location ... e city rural

	f1	f2	f3	f4	f5	f 6		1		1		fn
g1	1	0	0	1	1	1	0	0	1	0	1	1
g2	0	1	1	0	1	1	0	0	0	1	1	0
g3	0	1	1	1	0	0	1	1	0	0	0	1
g4	1	1	1	0	1	1010	0	0	1	1	1	0
g5	1	1	1	0	0 /	001	0	1	1	0	1	0
g1	0	٥	1	1	0	0	0	1	0	0	0	1
g2	1	1	0	0	1	1	0	1	0	1	1	1
g3	0	0	0	0	1	0	0	1	1	1	0	0
g4	1	0	1	1	1	0	1	0	0	1	0	1

Step 1 Propositionalization

	f1	f2	f3	f4	f5	f6		1		1		fn
g1	1	0	0	1	1	1	0	0	1	0	1	1
g2	0	1	1	0	1	1	0	0	0	1	1	0
g3	0	1	1	1	0	0	1	1	0	0	0	1
g4	1	1	1	0	1	ro l o	0	0	1	1	1	0
g5	1	1	1	0	0 4	0010	0	1	1	0	1	0
g1	0	٥	1	1	0	0	0	1	0	0	0	1
g2	1	1	0	0	1	1	0	1	0	1	1	1
g3	0	0	0	0	1	0	0	1	1	1	0	0
g4	1	0	1	1	1	0	1	0	0	1	0	1

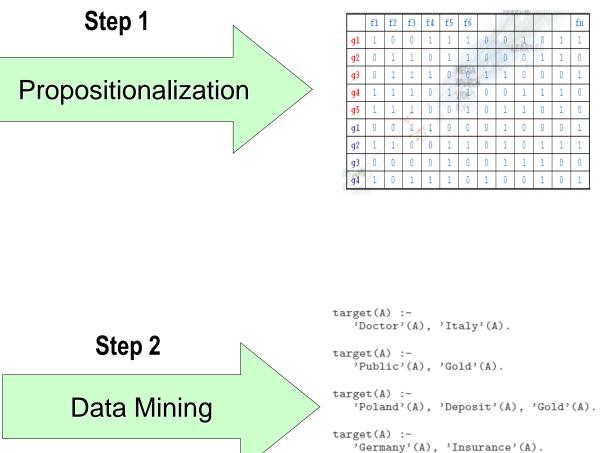


model, patterns, ...

					custo						
		ID 1	Zip	Se2	x So St	\lim_{com}	e g	e	Cl ub	$_{ m sp}^{ m Re}$	
							1.				
		3478	34677	m	ısi	60-7	0 3	2	me	nr	
/	/	3479	43666	f	ma	80-9	04	5	\mathbf{nm}	ге	
								••			
-/			order								
Customer				П	Deliv	erv	Pa	m	nt.		
Customer ID	Ш	44.1	$\frac{\text{Store}}{\mathbb{D}}$		Mode		Mo				
			\	Ţ							
3478	214	0267	12	۱þ	regula	ur	cas	h			
3478	344	6778	12	۱ŀ	expre	ss	che	\mathbf{x} l	r		
3478	472	28386	17	þ	regula	ur	che	\mathbf{x}	r		
3479	323	3444	17	P	expre	ss	cre	di	t		
3479	347	5886	12	þ	regula	ur	cre	di	t		
]	ŀ	.						
					1						
					гt				st	ore	
					Sto	rеП	S	ize		Гуре	Location
					12		sı	ną	ա £	ranchise	city
					17		la	rg	e li	ndep	rural

Relational representation of customers, orders and stores.

	f1	f2	f3	f4	f5	f 6		1		1		fn
g1	1	0	0	1	1	1	0	0	1	0	1	1
g2	0	1	1	0	1	1	0	0	0	1	1	0
g3	0	1	1	1	0	0	1	1	0	0	0	1
g4	1	1	1	0	1	10 1 0	0	0	1	1	1	0
g5	1	1	1	0	0 /	01	0	1	1	0	1	0
g1	0	0	1	1	0	0	0	1	0	0	0	1
g2	1	1	0	0	1	1	0	1	0	1	1	1
g3	0	0	0	0	1	0	0	1	1	1	0	0
g4	1	0	1	1	1	0	1	0	0	1	0	1



```
target(A) :-
```

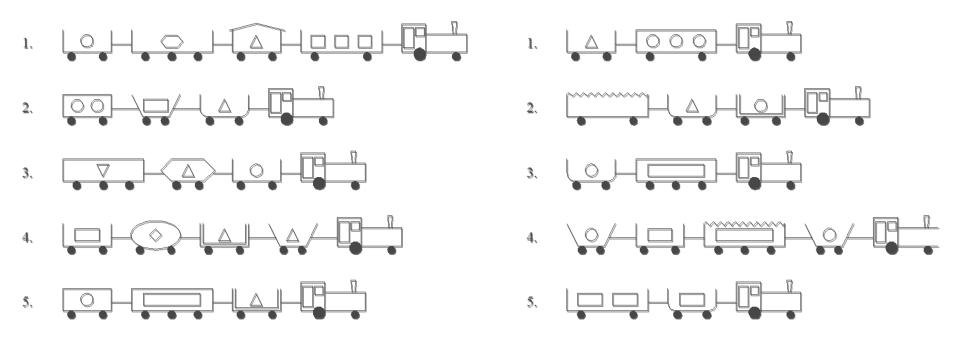
```
'Service'(A), 'Germany'(A).
```

patterns (set of rules)

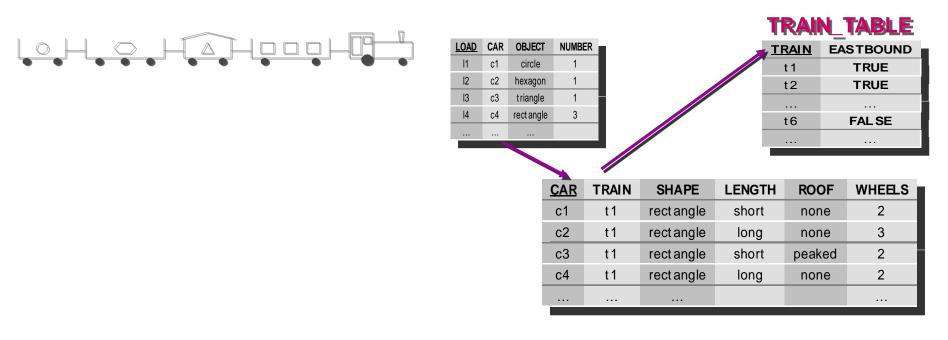
Sample ILP problem: East-West trains

1. TRAINS GOING EAST

2. TRAINS GOING WEST



Relational data representation

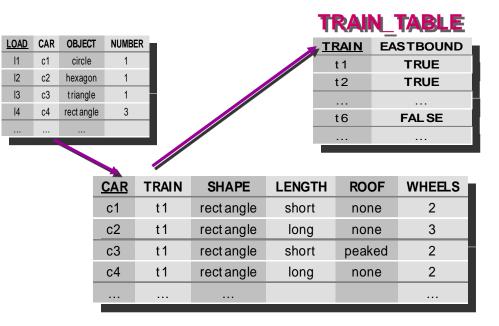


Propositionalization in a nutshell

Propositionalization task

Transform a multi-relational (**multiple-table**) representation to a propositional representation (**single table**)

Proposed in ILP systems LINUS (Lavrac et al. 1991, 1994), 1BC (Flach and Lachiche 1999), ...



Propositionalization in a nutshell

Main propositionalization step: first-order feature construction

						T	RAIN_	TABLE
<u>.0AD</u>	CAR	OBJECT	NUMBE	R		🗾 <u>T</u> I	RAIN EA	
1	c1	circle	1				t 1	TRUE
12	c2	hexagon	1				t2	TRUE
13	c3	triangle	1					
14	c4	rect angle	3				t6	FAL SE
				_//				
			CAR	TRAIN	SHAPE	LENGTH	ROOF	WHEELS
			c1	t1	rect angle	short	none	2
			c2	t1	rect angle	long	none	3
			c3	t1	rect angle	short	peaked	2
			c4	t1	rect angle	long	none	2

Propositional learning:

 $t(T) \leftarrow f1(T), f4(T)$

Relational interpretation:

eastbound(T) \leftarrow hasShortCar(T),hasClosedCar(T).

PROPOSITIONAL TRAIN_TABLE

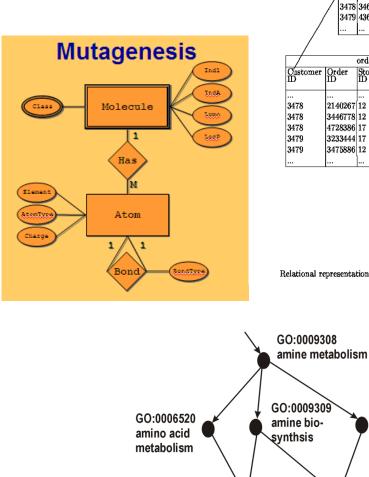
<u>train(T)</u>	f1(T)	f2(T)	f3(T)	f4(T)	f5(T)
t1	t	t	f	t	t
t2	t	t	t	t	t
t3	f	f	t	f	f
t4	t	f	t	f	f

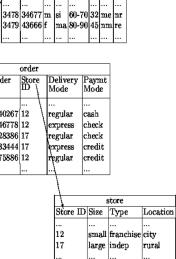
Part V: Relational Data Mining

- What is RDM
- Propositionalization techniques
- Semantic Data Mining

Semantic data mining

- ILP, relational learning, • relational data mining
 - Learning from complex multi-relational data
 - Learning from complex structured data: e.g., molecules and their biochemical properties
 - Learning by using domain knowledge in the form of ontologies = **semantic data** mining



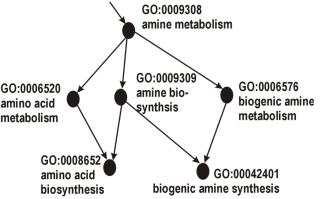


customer

Zip

S So In A Cl Re ex St come ge ub sp

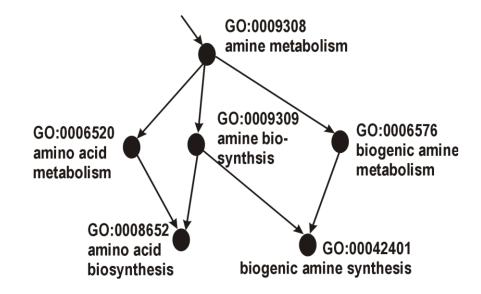
Relational representation of customers, orders and stores.



Using domain ontologies in Semantic Data Mining

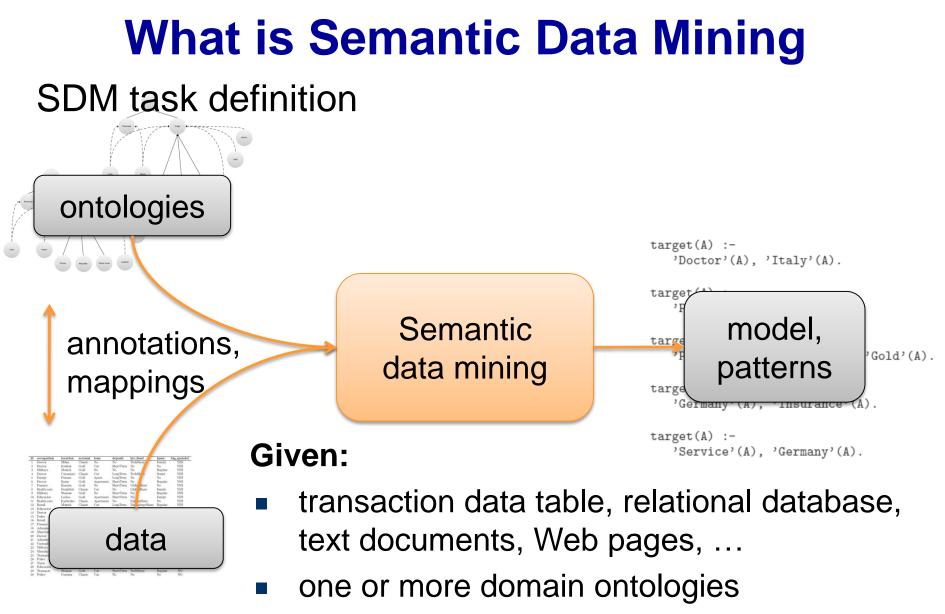
Using domain ontologies as background knowledge, e.g., using the Gene Ontology (GO)

- GO is a database of terms, describing gene sets in terms of their
 - functions (12,093)
 - processes (1,812)
 - components (7,459)
- Genes are annotated to GO terms
- Terms are connected (is_a, part_of)
- Levels represent terms generality



What is Semantic Data Mining

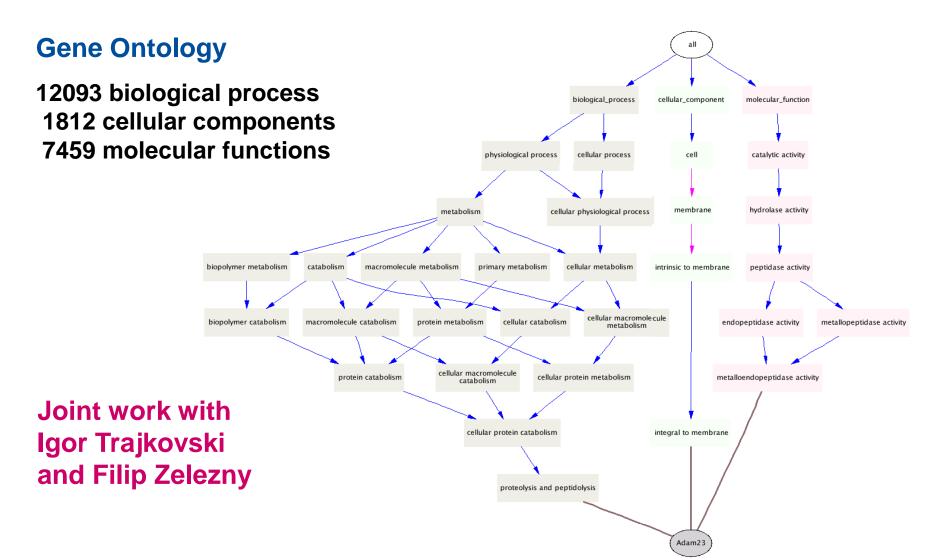
- Ontology-driven (semantic) data mining is an emerging research topic
- Semantic Data Mining (SDM) a new term denoting:
 - the new challenge of mining semantically annotated resources, with ontologies used as background knowledge to data mining
 - approaches with which semantic data are mined



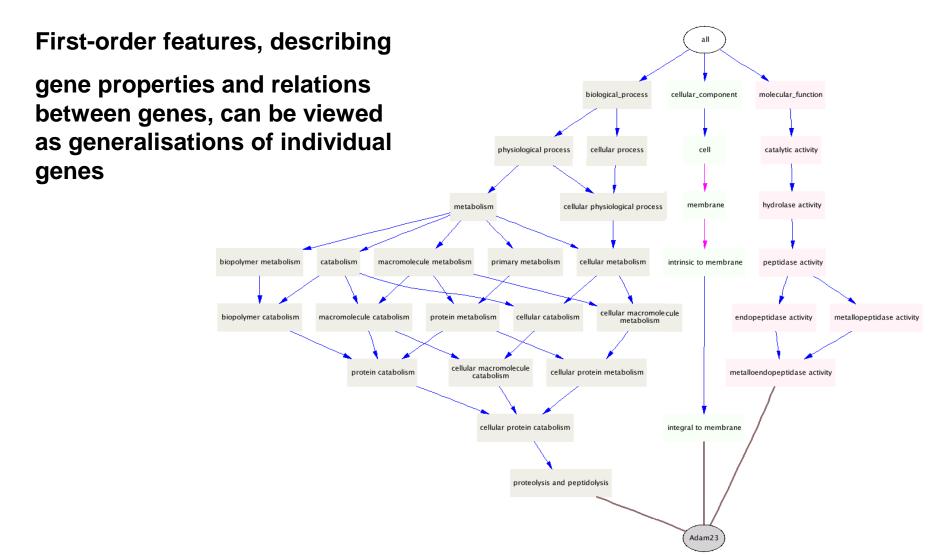
Find: a classification model, a set of patterns

24

Using domain ontologies (e.g. Gene Ontology) as background knowledge for Data Mining



Using domain ontologies (e.g. Gene Ontology) as background knowledge for Data Mining



Semantic subgroup discovery with RSD

- 1. Take ontology terms represented as logical facts in Prolog, e.g. component (gene2532, 'GO:0016020'). function (gene2534, 'GO:0030554'). process (gene2534, 'GO:0007243'). interaction (gene2534, gene4803).
- 2. Automatically generate generalized relational features:

3. Propositionalization: Determine truth values of features

4. Learn rules by a subgroup discovery algorithm CN2-SD

Step 2: RSD feature construction

Construction of first order features, with support > *min_support*

f(7,A):-function(A,'GO:0046872'). f(8,A):-function(A,'GO:0004871'). f(11,A):-process(A,'GO:0007165'). f(14,A):-process(A,'GO:0044267'). f(15,A):-process(A,'GO:0050874'). f(20,A):-function(A,'GO:0004871'), process(A,'GO:0050874'). f(26,A):-component(A,'GO:0016021'). f(29,A):- function(A,'GO:0046872'), component(A,'GO:0016020') f(122,A):-interaction(A,B),function(B,'GO:0004872'). f(223,A):-interaction(A,B),function(B,'GO:0004871'), existential process(B,'GO:0009613'). f(224,A):-interaction(A,B),function(B,'GO:0016787'), component(B,'GO:0043231').

Step 3: RSD Propositionalization

diffexp g1 (gene64499) diffexp g2 (gene2534) diffexp g3 (gene5199) diffexp g4 (gene1052) diffexp g5 (gene6036)

. . . .

random g1 (gene7443) random g2 (gene9221) random g3 (gene2339) random g4 (gene9657) random g5 (gene19679)

	f1	f2	f3	f4	f 5	f6						fn
g1	1	0	0	1	1	1	0	0	1	0	1	1
g2	0	1	1	0	1	1	0	0	0	1	1	0
g 3	0	1	1	1	0	0	1	1	0	0	0	1
g4	1	1	1	0	1	1	0	0	1	1	1	0
g 5	1	1	1	0	0	1	0	1	1	0	1	0
g1	0	0	1	1	0	0	0	1	0	0	0	1
g2	1	1	0	0	1	1	0	1	0	1	1	1
g 3	0	0	0	0	1	0	0	1	1	1	0	0
g4	1	0	1	1	1	0	1	0	0	1	0	1

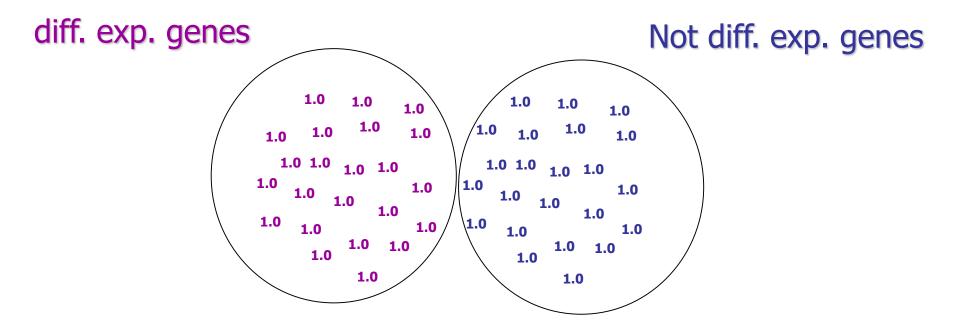
. . . .

Step 4: RSD rule construction with CN2-SD

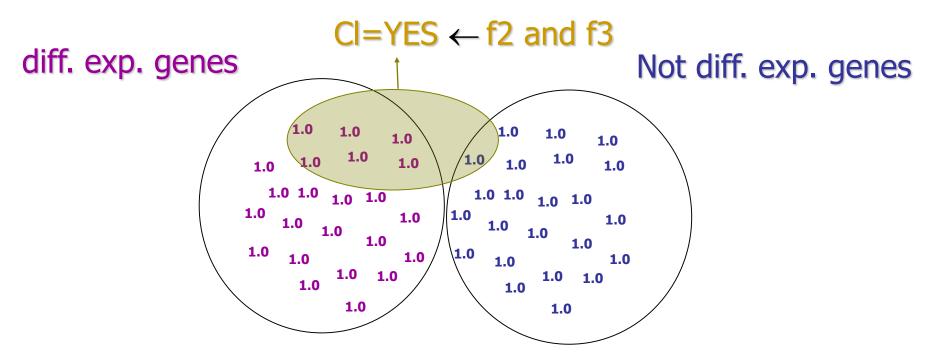
	f1	f2	£3	f4	f5	f6						fn	Over-
g1	1	0	0	1	1	1	0	0	1	0	1	1	expressed
g 2	0	1	1	0	1	1	0	0	0	1	1	0	IF
g3	0	1	1	1	0	0	1	1	0	0	0	1	f2 and f3
g4	1	1	1	0	1	1	0	0	1	1	1	0	[4,0]
g 5	1	1	1	0	0	1	0	1	1	0	1	0	- · -
g1	0	0	1	1	0	0	0	1	0	0	0	1	
g2	1	1	0	0	1	1	0	1	0	1	1	1	
g3	0	0	0	0	1	0	0	1	1	1	0	0	
g4	1	0	1	1	1	0	1	0	0	1	0	1	

diffexp(A) :- interaction(A,B) & function(B,'GO:0004871')

Subgroup Discovery



Subgroup Discovery



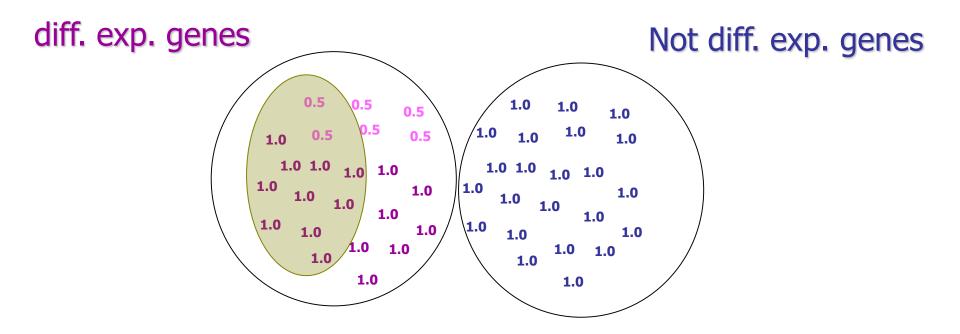
In RSD (using propositional learner CN2-SD):

Quality of the rules = Coverage x Precision

*Coverage = sum of the covered weights

*Precision = purity of the covered genes

Subgroup Discovery



RSD naturally uses gene weights in its procedure for repetitive subgroup generation, via its heuristic rule evaluation: weighted relative accuracy

RSD Lessons learned

Efficient propositionalization can be applied to individual-centered, multi-instance learning problems:

- one free global variable (denoting an individual, e.g. molecule M)
- one or more structural predicates: (e.g. has_atom(M,A)), each introducing a new existential local variable (e.g. atom A), using either the global variable (M) or a local variable introduced by other structural predicates (A)
- one or more utility predicates defining properties of individuals or their parts, assigning values to variables

feature121(M):- hasAtom(M,A), atomType(A,21)

feature235(M):- lumo(M,Lu), lessThr(Lu,-1.21)

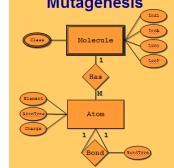
mutagenic(M):- feature121(M), feature235(M)

Relational Data Mining in Orange4WS

 service for propositionalization through efficient first-order feature construction (Železny and Lavrač, MLJ 2006)

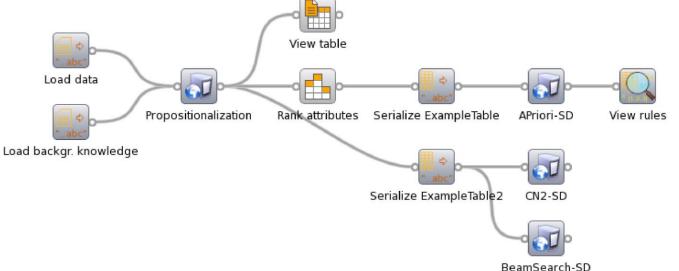
f121(M):- hasAtom(M,A), atomType(A,21) f235(M):- lumo(M,Lu), lessThr(Lu,1.21)

subgroup discovery using CN2-SD



35

mutagenic(M) \leftarrow feature121(M), feature235(M)

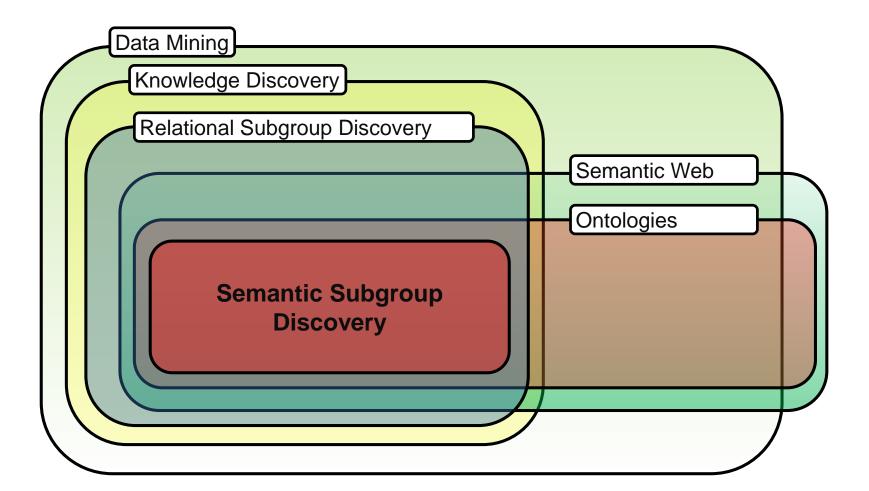


Semantic Data Mining in Orange4WS

- A special purpose Semantic Data Mining algorithm SEGS
 - discovers interesting gene group descriptions as conjunctions of ontology concepts from GO, KEGG and Entrez
 - integrates public gene annotation data through relational features
 - SEGS algorithm (Trajkovski, Železny, Lavrač and Tolar, JBI 2008) is available in Orange4WS
- Recent developments:
 - Special purpose SDM algorithms: RSD, SDM-SEGS, SDM-Aleph, Hedwig
 - Implemented in web based DM platform ClowdFlows

Semantic Data Mining

• Semantic subgroup discovery (Vavpetič et al., 2012)



Advanced Topics

Outlier detection

- Text mining: An introduction
- Document clustering and outlier detection
- Wordification approach to relational data mining

Noise and outliers

- Errors in the data noise
 - Animals of white color

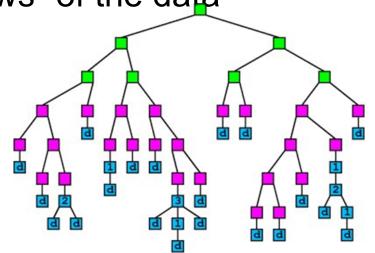
• Exceptions or Outliers

– Herd of sheep

Noise and outliers

- Data in nature
 - follows certain patters
 - adheres to the laws of physics
 - is not random

- Build models to Identify the "laws" of the data
 Patterns and rules =
 = "laws" of the data
- Errors and outliers
 - Do NOT obey the laws (models)



Noise and outlier detection

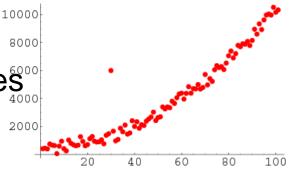
- **Noise** in data negatively affect data mining results. (Zhu et al., 2004)
- False medical diagnosis (classification noise) can have serious consequences (Gamberger et al. 2003)
- Outlier detection proved to be effective in detection of network intrusion and bank fraud. (Aggarwal and Yu, 2001)

Detecting noise and outliers

- Errors and exceptions are:
 - Inconsistencies with common patterns

Great deviations from expected values

– Hard to describe

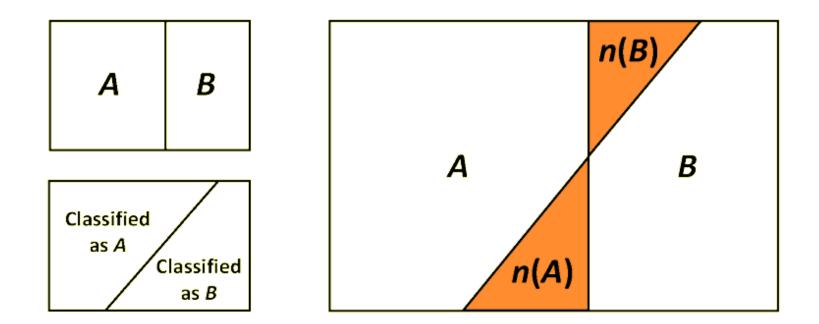


Classification noise filtering

- Model the data
- What can't be modeled is considered noise

Classification noise filtering

- Model the data, using any learning algorithm
- What can't be modeled is considered noise



Ensembles of classifiers



- Combine predictions of various models
- To overcome weaknesses or bias of individual models
- Averaging, Majority voting, Consensus voting, Ranking, etc.

NoiseRank: Ensemble-based noise and outlier detection

- Misclassified document detection by an ensemble of diverse classifiers (e.g., Naive Bayes, Random Forest, SVM, ... classifiers)
- Ranking of misclassified documents by "voting" of classifiers

Classification Filters	Saturation filters (time demanding)
✓ Naive Bayes (Bayes)	✓ Saturation Filter (SatFilt)
knn	Pre-pruned SatFilt (PruneSF)
 ✓ Random Forest 100 trees (RF100) ✓ Random Forest 500 trees (RF500) 	HARF
SVM SVMEasy	Use only HARF
Start Noise I	Detection
46%	6
loise Ranking Results	

Advanced Topics

- Outlier detection
- Text mining: An introduction
- Document clustering and outlier detection
- Wordification approach to relational data mining

Background: Data mining

Person 01 02 03 04 05 06-013 014 015	Age 17 23 22 27 19 35 43	Spect. presc. myope myope myope hypermetrope hypermetrope	Astigm. no yes yes no no ves	Tear prod. reduced normal reduced normal reduced normal reduced	Lenses NONE SOFT NONE HARD NONE SOFT NONE	knowledge discovery from data Data Mining
O15 O16	43 39	hypermetrope hypermetrope	yes yes	reduced normal	NONE NONE	
017	54	myope	no	reduced	NONE	
O18	62	myope	no	normal	NONE	
019-023						model, patterns, clusters
O24	56	hypermetrope	yes	normal	NONE	, , , ,

data

Given: transaction data table, a set of text documents, ... **Find:** a classification model, a set of interesting patterns

. . .

Data mining: Task reformulation

Person	Young	Муоре	Astigm.	Reuced tea	Lenses
01	1	1	0	1	NO
O2	1	1	0	0	YES
O3	1	1	1	1	NO
O4	1	1	1	0	YES
O5	1	0	0	1	NO
06-013					
O14	0	0	0	0	YES
O15	0	0	1	1	NO
O16	0	0	1	0	NO
O17	0	1	0	1	NO
O18	0	1	0	0	NO
019-023					
O24	0	0	1	0	NO

Binary features and class values

Text mining: Words/terms as binary features

Document	Word1	Word2		WordN	Class
d1	1	1	0	1	NO
d2	1	1	0	0	YES
d3	1	1	1	1	NO
d4	1	1	1	0	YES
d5	1	0	0	1	NO
d6-d13					
d14	0	0	0	0	YES
d15	0	0	1	1	NO
d16	0	0	1	0	NO
d17	0	1	0	1	NO
d18	0	1	0	0	NO
d19-d23					
d24	0	0	1	0	NO

Instances = documents Words and terms = Binary features

Text Mining from unlabeled data

Document	Word1	Word2		WordN	Class
d1	1	1	0	1	NO
d2	1	1	0	0	YES /
d3	1	1	1	1	NO /
d4	1	1	1	0	YES
d5	1	0	0	1	NC
d6-d13					V
d14	0	0	0	0	YAS
d15	0	0	1	1	NQ
d16	0	0	1	0	NO
d17	0	1	0	1	NO NO
d18	0	1	0	0	NO NO
d19-d23					/ \
d24	0	0	1	0	/ NO \

Unlabeled data - clustering: grouping of similar instances - association rule learning

Text mining

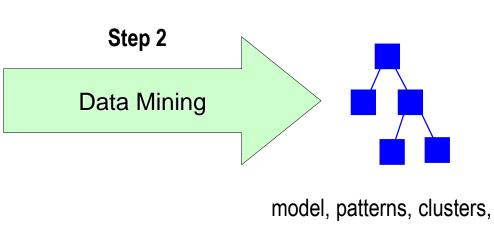
BoW vector construction

Step 1

- 1. BoW features construction
- 2. Table of BoW vectors construction

Document	Word1	Word2		WordN	Class
d1	1	1	0	1	NO
d2	1	1	0	0	YES
d3	1	1	1	1	NO
d4	1	1	1	0	YES
d5	1	0	0	1	NO
d6-d13					
d14	0	0	0	0	YES
d15	0	0	1	1	NO
d16	0	0	1	0	NO
d17	0	1	0	1	NO
d18	0	1	0	0	NO
d19-d23					
d24	0	0	1	0	NO

Document	Word1	Word2		WordN	Class
d1	1	1	0	1	NO
d2	1	1	0	0	YES
d3	1	1	1	1	NO
d4	1	1	1	0	YES
d5	1	0	0	1	NO
d6-d13					
d14	0	0	0	0	YES
d15	0	0	1	1	NO
d16	0	0	1	0	NO
d17	0	1	0	1	NO
d18	0	1	0	0	NO
d19-d23					
d24	0	0	1	0	NO



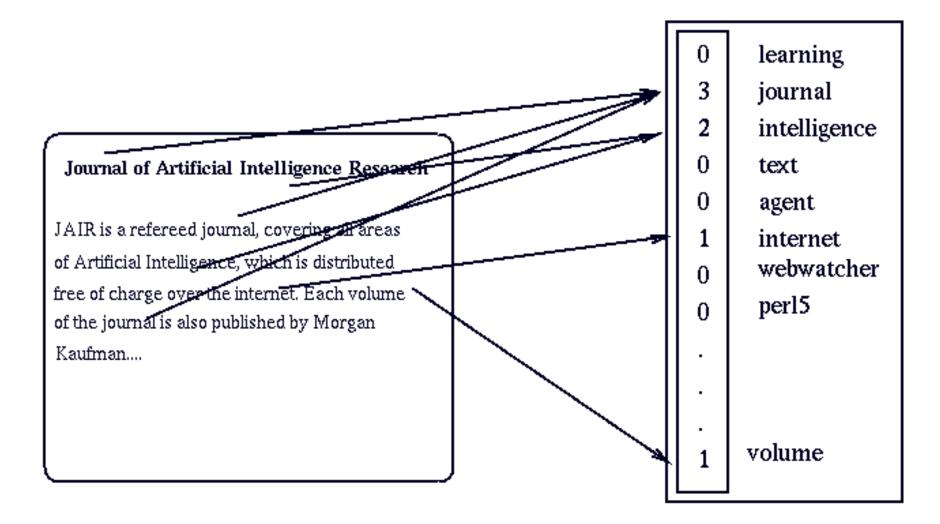
Text Mining

- Feature construction
 - StopWords elimination
 - Stemming or lemmatization
 - Term construction by frequent N-Grams construction
 - Terms obtained from thesaurus (e.g., WordNet)
- BoW vector construction
- Mining of BoW vector table
 - Feature selection, Document similarity computation
 - Text mining: Categorization, Clustering, Summarization,

Stemming and Lemmatization

- Different forms of the same word usually problematic for text data analysis
 - because they have different spelling and similar meaning (e.g. learns, learned, learning,...)
 - usually treated as completely unrelated words
- Stemming is a process of transforming a word into its stem
 - cutting off a suffix (eg., smejala -> smej)
- Lemmatization is a process of transforming a word into its normalized form
 - replacing the word, most often replacing a suffix (eg., smejala -> smejati)

Bag-of-Words document representation



Word weighting

- In bag-of-words representation each word is represented as a separate variable having numeric weight.
- The most popular weighting schema is normalized word frequency TFIDF:

$$tfidf(w) = tf \cdot \log(\frac{N}{df(w)})$$

- Tf(w) term frequency (number of word occurrences in a document)
- Df(w) document frequency (number of documents containing the word)
- N number of α l documents
- Tfidf(w) relative importance of the word in the document

The word is more important if it appears several times in a target document

The word is more important if it appears in less documents

Cosine similarity between document vectors

- Each document D is represented as a vector of TF-IDF weights
- Similarity between two vectors is estimated by the similarity between their vector representations (cosine of the angle between the two vectors):

Similarity
$$(D_1, D_2) = \frac{\sum_{i} x_{1i} x_{2i}}{\sqrt{\sum_{j} x_j^2} \sqrt{\sum_{k} x_k^2}}$$

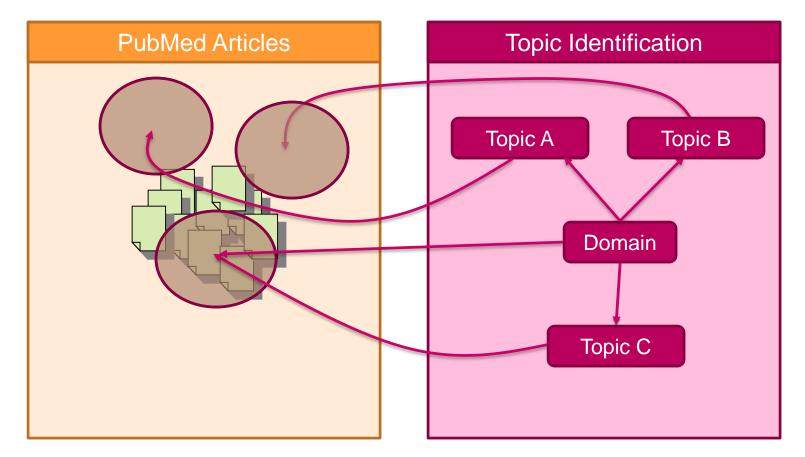
Advanced Topics

- Outlier detection
- Text mining: An introduction
 - Document clustering and outlier detection
- Wordification approach to relational data mining

Document clustering

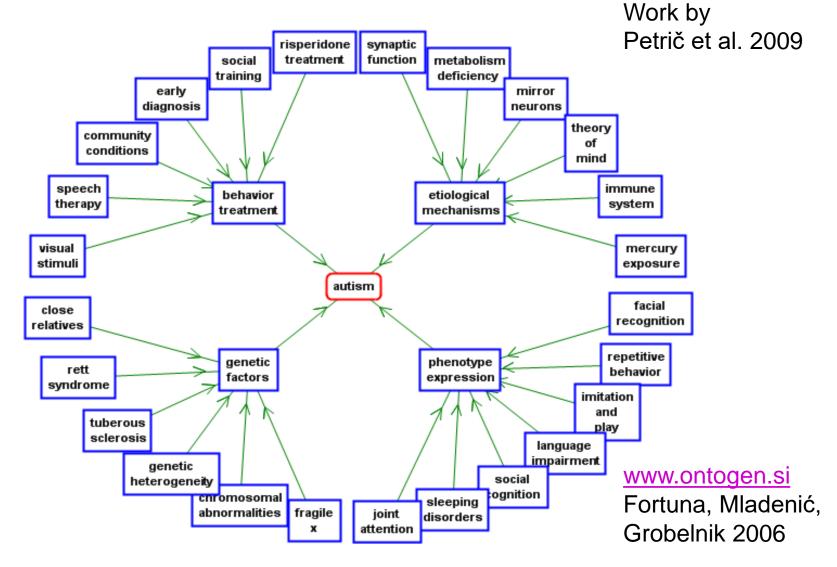
- Clustering is a process of finding natural groups in data in a unsupervised way (no class labels preassigned to documents)
- Document similarity is used
- Most popular clustering methods:
 - K-Means clustering
 - Agglomerative hierarchical clustering
 - EM (Gaussian Mixture)

Document clustering with OntoGen ontogen.ijs.si



Slide adapted from D. Mladenić, JSI

Using OntoGen for clustering PubMed articles on autism



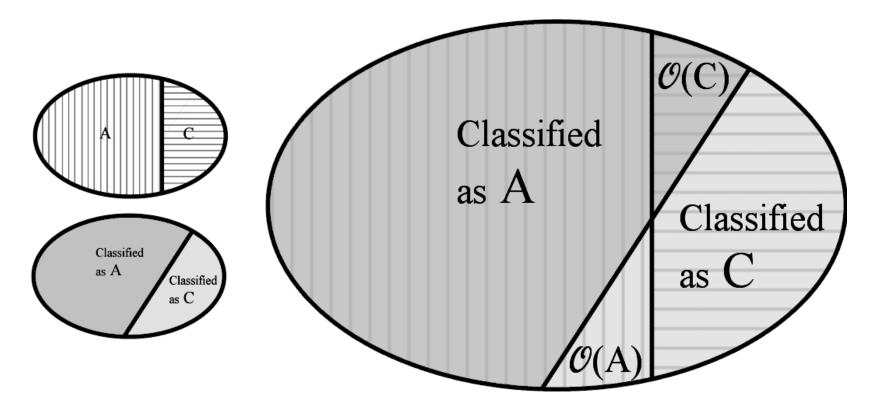
K-Means clustering in OntoGen

OntoGen uses k-Means clustering for semi-automated topic ontology construction

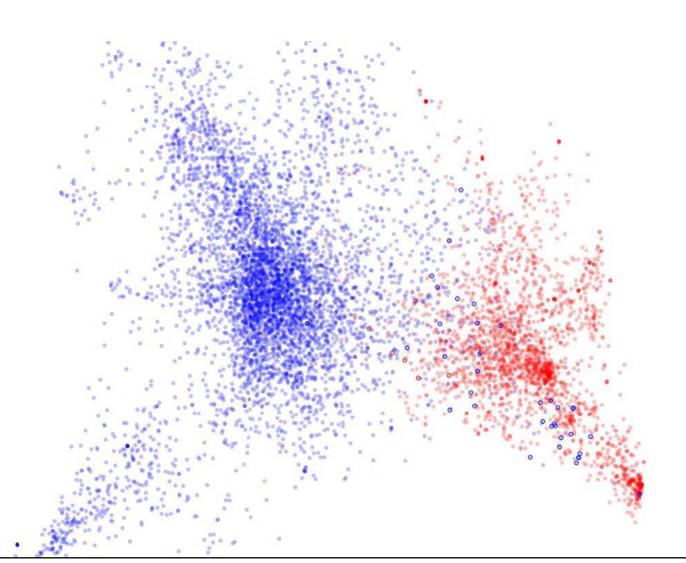
- Given:
 - set of documents (eg., word-vectors with TFIDF),
 - distance measure (eg., cosine similarity)
 - K number of groups
- For each group initialize its centroid with a random document
- While not converging
 - each document is assigned to the nearest group (represented by its centroid)
 - for each group calculate new centroid (group mass point, average document in the group)

Detecting outlier documents

 By classification noise detection on a domain pair dataset, assuming two separate document corpora A and C



Outlier detection for cross-domain knowledge discovery

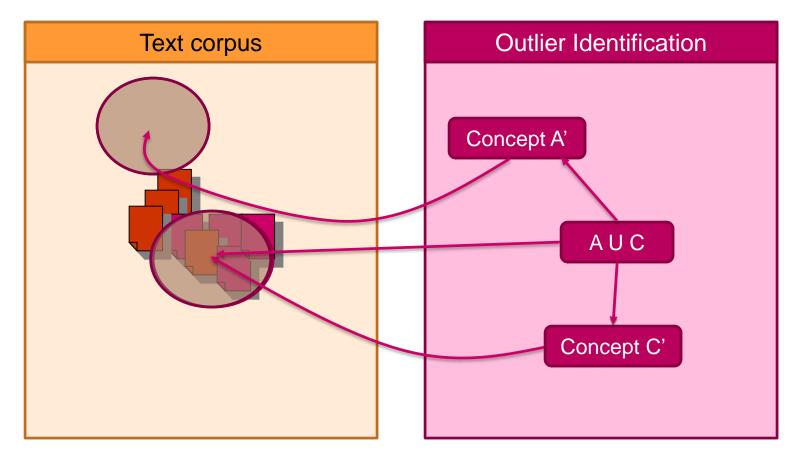


2-dimensional projection of documents (about autism (red) and calcineurin (blue). Outlier documents are bolded for the user to easily spot them.

Our research has shown that most domain bridging terms appear in outlier documents.

(Lavrač, Sluban, Grčar, Juršič 2010)

Using OntoGen for outlier document identification



Slide adapted from D. Mladenić, JSI

Advanced Topics

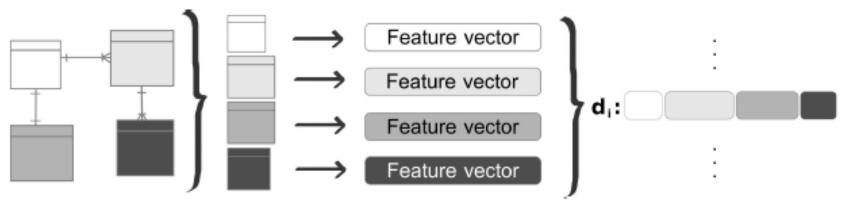
- Outlier detection
- Text mining: An introduction
- Document clustering and outlier detection
- Wordification approach to relational data mining

Propositionaization through Wordification: Motivation

- Develop a RDM technique inspired by text mining
- Using a large number of simple, easy to understand features (words)
- Improved scalability, handling large datasets
- Used as a preprocessing step to propositional learners

Wordification Methodology

- Transform a relational database to a document corpus
 - For each individual (row) in the main table, concatenate words generated for the main table with words generated for the other tables, linked through external keys



Text mining

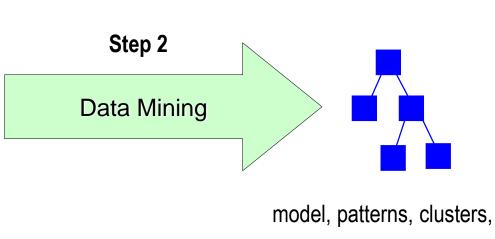
BoW vector construction

Step 1

- 1. BoW features construction
- 2. Table of BoW vectors construction

Document	Word1	Word2		WordN	Class
d1	1	1	0	1	NO
d2	1	1	0	0	YES
d3	1	1	1	1	NO
d4	1	1	1	0	YES
d5	1	0	0	1	NO
d6-d13					
d14	0	0	0	0	YES
d15	0	0	1	1	NO
d16	0	0	1	0	NO
d17	0	1	0	1	NO
d18	0	1	0	0	NO
d19-d23					
d24	0	0	1	0	NO

Document	Word1	Word2		WordN	Class
d1	1	1	0	1	NO
d2	1	1	0	0	YES
d3	1	1	1	1	NO
d4	1	1	1	0	YES
d5	1	0	0	1	NO
d6-d13					
d14	0	0	0	0	YES
d15	0	0	1	1	NO
d16	0	0	1	0	NO
d17	0	1	0	1	NO
d18	0	1	0	0	NO
d19-d23					
d24	0	0	1	0	NO



Wordification Methodology

- One individual of the main data table in the relational database ~ one text document
- Features (attribute values) ~ the words of this document
- Individual words (called **word-items** or **witems**) are constructed as combinations of:

[table name]_[attribute name]_[value]

• **n-grams** are constructed to model feature dependencies:

$$[witem_1]_{-}[witem_2]_{-} \dots _{-}[witem_n]$$

Wordification Methodology

- Transform a relational database to a document corpus
- Construct BoW vectors with TF-IDF weights on words

(optional: Perform feature selection)

• Apply text mining or propositional learning on BoW table

Wordification

CAR

TRAIN		carID	shape	roof	wheels	train
trainID	eastbound	c11	rectangle	none	2	t1
t1	east	c12	rectangle	peaked	3	t1
				•••		
t5	west	c51	rectangle	none	2	t5
		c52	hexagon	flat	2	t5

t1: [car_roof_none, car_shape_rectangle, car_wheels_2, car_roof_none__car_shape_rectangle, car_roof_none__car_wheels_2, car_shape_rectangle__car_wheels_2, car_roof_peaked, car_shape_rectangle, car_wheels_3, car_roof_peaked__car_shape_rectangle, car_roof_peaked__car_wheels_3, car_shape_rectangle__car_wheels_3], east

Wordification

t1: [car_roof_none, car_shape_rectangle, car_wheels_2, car_roof_none__car_shape_rectangle, car_roof_none__car_wheels_2, car_shape_rectangle__car_wheels_2, car_roof_peaked, car_shape_rectangle, car_wheels_3, car_roof_peaked__car_shape_rectangle, car_roof_peaked__car_shape_rectangle__car_wheels_3], **east**

t5: [car_roof_none, car_shape_rectangle, car_wheels_2, car_roof_none__car_shape_rectangle, car_roof_none__car_wheels_2, car_shape_rectangle__car_wheels_2, car_roof_flat, car_shape_hexagon, car_wheels_2, car_roof_flat__car_shape_hexagon, car_roof_flat__car_wheels_2, car_shape_hexagon__car_wheels_2], **west**

TF-IDF calculation for BoW vector construction:

	car_shape	car_roof	car_wheels_3	car_roof_peaked	car_shape_rectangle	 class
	_rectangle	_peaked		car_shape_rectangle	car_wheels_3	
t1	0.000	0.693	0.693	0.693	0.693	 east
t5	0.000	0.000	0.000	0.000	0.000	 west

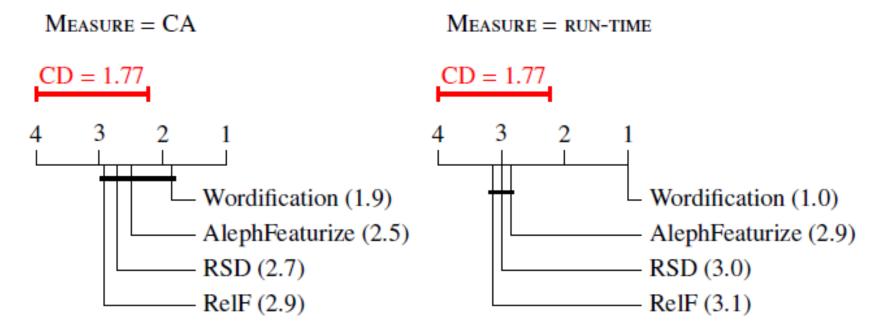
TF-IDF weights

- No explicit use of existential variables in features, TF-IDF instead
- The weight of a word indicates how relevant is the feature for the given individual
- The TF-IDF weights can then be used either for filtering words with low importance or for using them directly by a propositional learner (e.g. J48)

- Cross-validation experiments on 8 relational datasets: Trains (in two variants), Carcinogenesis, Mutagenensis with 42 and 188 examples, IMDB, and Financial.
- Results (using J48 for propositional learning)

- Cross-validation experiments on 8 relational datasets: Trains (in two variants), Carcinogenesis, Mutagenensis with 42 and 188 examples, IMDB, and Financial.
- Results (using J48 for propositional learning)
 - first applying Friedman test to rank the algorithms,
 - then post-hoc test Nemenyi test to compare multiple algorithms to each other

- Cross-validation experiments on 8 relational datasets: Trains (in two variants), Carcinogenesis, Mutagenensis with 42 and 188 examples, IMDB, and Financial.
- Results (using J48 for propositional learning)



Domain	Algorithm	J48-Accuracy[%]	J48-AUC	Run-time[s]
Trains	Wordification	55.00	0.51	0.11
without position	RelF	65.00	0.65	1.04
	RSD	65.00	0.68	0.53
	A lephFeaturize	75.00	0.82	0.40
Trains	Wordification	95.00	0.91	0.12
	RelF	65.00	0.62	1.06
	RSD	50.00	0.53	0.47
	A lephFeaturize	85.00	0.74	0.38
Mutagenesis42	Wordification	97.62	0.93	0.39
	RelF	80.95	0.59	2.11
	RSD	97.62	0.93	2.63
	A lephFeaturize	97.62	0.93	2.07
Mutagenesis188	Wordification	95.74	0.90	1.65
	RelF	75.53	0.79	7.76
	RSD	94.15	0.91	10.10
	A lephFeaturize	87.23	0.88	19.27
IMDB	Wordification	84.34	0.79	1.23
	RelF	79.52	0.73	32.49
	RSD	73.49	0.47	4.33
	A lephFeaturize	73.49	0.47	4.96
Carcinogenesis	Wordification	61.09	0.62	1.79
	RelF	54.71	0.53	16.44
	RSD	58.05	0.56	9.29
	A lephFeaturize	55.32	0.49	104.70
Financial	Wordification	86.75	0.48	4.65
	RelF	97.00	0.91	260.93
	RSD	86.75	0.48	533.68
	AlephFeaturize	86.75	0.48	525.86

Use Case: IMDB

- IMDB subset: Top 250 and bottom 100 movies
- Movies, actors, movie genres, directors, director genres
- Wordification methodology applied
- Association rules learned on BoW vector table

Use Case: IMDB

movie_genre_drama <-- goodMovie, actor_name_RobertDeNiro.

(Support: 3.59% Confidence: 100.00%)

director_name_AlfredHitchcock \leftarrow actor_name_AlfredHitchcock.

(Support: 4.79% Confidence: 100.00%)

director_name_StevenSpielberg ~ goodMovie, movie_genre_adventure, (Support: 1.79% Confidence: 100.00%) actor_name_TedGrossman.

Summary

- Wordification methodology
- Allows for solving non-standard RDM tasks, including RDM clustering, word cloud visualization, association rule learning, topic ontology construction, outlier detection, ...

